

Third Semester B.E. Degree Examination, June 2012 Field Theory

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Derive the expression for \vec{E} due to an infinite line of charge. (08 Marks)
 - b. Given $\vec{D} = 5 \sin \theta \ \hat{a}_{\theta} + 5 \sin \phi \ \hat{a}_{\phi}$, find the charge density at (0.5m, $\pi/4$, $\pi/4$). (04 Marks)
 - c. Given that $\vec{A}=30~e^{-r}~\hat{a_r}-2z~\hat{a_z}$. Evaluate both sides of the divergence theorem for the volume enclosed by r=2,~z=0~ and z=5. (08 Marks)
- 2 a. Define electric scalar potential. Derive an expression for potential due to several point charges. (06 Marks)
 - b. A total charge of 40/3 nc is uniformly distributed over a circular ring of radius 2m placed in Z = 0 plane, with center as origin. Find the electric potential at A (0, 0, 5). (06 Marks)
 - c. Discuss the boundary conditions at the interface between two dielectrics of different permittivities. (08 Marks)
- 3 a. Starting from Gauss's law in integral form, derive Laplace's and Poisson's equations. Write Laplace's equation in all the coordinate systems. (06 Marks)
 - b. Determine whether or not the following vectors represent a possible electric field
 - i) $\vec{E} = 5 \cos z \ \hat{a}_z \ V/m$

ii)
$$\vec{E} = (12yx^2 - 6z^2x) \ \hat{a_x} + (4x^3 + 18zy^2) \ \hat{a_y} + (6y^3 - 6zx^2) \ \hat{a_z}$$
. (06 Marks)

- c. Conducting spherical shells with radii a = 10 cm and b = 30 cm are maintained at a potential difference of 100V such that V = 0 at r = b and V = 100V at r = a. Determine V and \vec{E} in the region between the shells. If $\epsilon_r = 2.5$ in the region, determine the total charge induced on the shells and the capacitance there on. (08 Marks)
- 4 a. State Biot-Savart law. Obtain an expression for magnetic field intensity due to straight conductor of finite length. (07 Marks)
 - b. In the region 0 < r < 0.5m, in cylindrical co-ordinates, the current density is $\vec{J} = 4.5e^{-2r} \ \hat{a_z}$ and $\vec{J} = 0$ elsewhere. Use amperes circuital law to find \vec{H} . (05 Marks)
 - c. Given the magnetic field $\vec{H}=2r^2(z+1)\sin\varphi$ $\hat{a_{\varphi}}$. Verify Stokes theorem for the portion of a cylindrical surface defined by r=2, $\frac{\pi}{4}<\varphi<\frac{\pi}{2}$, 1< z<1.5 and for its perimeter. (08 Marks)

PART - B

- 5 a. Obtain the expression of magnetic force between differential current elements. (05 Marks) A point charge Q = 18 nc has a velocity of 5×10^6 m/s in the direction
 - b. $\overrightarrow{a_v} = 0.6 \, \widehat{a_x} + 0.75 \, \widehat{a_y} + 0.3 \, \widehat{a_z}$. Calculate the magnitude of the force exerted on the charge by the field:
 - i) $\vec{E} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z kV/m$
 - ii) $\vec{B} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z$ mT
 - iii) \vec{B} and \vec{E} acting together.

(08 Marks)

(07 Marks)

c. If $\vec{B} = 0.05x \ a_v$ T in a material for which $\chi_m = 2.5$,

find: i) ulr; ii) ul; iii) \vec{H} ; iv) \vec{M} ; v) \vec{J} and vi) \vec{J}_b .

- 6 a. Write an explanatory note on : Maxwell's equations in point and integral forms applicable to time varying fields. (05 Marks)
 - b. Given $\vec{E} = \text{EmSin}(wt \beta z) \hat{a_y}$ in force space, find \vec{D} , \vec{B} and \vec{H} . Sketch \vec{E} and \vec{H} at t = 0.
 - c. Find the induced voltage in the conductor if $\vec{B} = 0.04\hat{a}_y$ T and $\vec{v} = 2.5 \text{Sin} 10^3 \text{t} \, \hat{a}_z$ m/s, find induced emf, if \vec{B} is changed to 0.04 \hat{a}_x T. (05 Marks)
- 7 a. Starting from Maxwell's equation, derive the wave equation for a uniform plane wave travelling in free space. (08 Marks)
 - b. A 800 MHz plane wave travelling has an average Poynting vector of 8 mW/m². If the medium is losses with $\mu_r = 1.5$ and $\epsilon_r = 6$. Find :
 - i) Velocity of wave
 - ii) Wavelength
 - iii) Impedance of the medium
 - iv) r.m.s. electric field E and
 - v) r.m.s. magnetic field H.

(08 Marks)

- c. Wet marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At frequencies 60Hz and 10 GHz indicate whether soil be considered a conductor or a dielectric. (04 Marks)
- 8 a. Explain the reflection of uniform plane waves, with normal incidence at a plane dielectric boundary. (08 Marks)
 - b. A free space-silver interface has Ei = 100 V/m on the free space side. The frequency is 15 MHz and silver constants are $\epsilon_r = \mu_r = 1$, $\sigma = 61.7$ MS/m. Determine E_r and E_t at the interface. (08 Marks)
 - c. Define:
 - i) Reflection coefficient
 - ii) Standing wave ratio.

(04 Marks)

* * * * *